A Technique to Classify the Similarity Solutions of Nonlinear Partial (Integro-)Differential Equations. II. Full Optimal Subalgebraic Systems
نویسنده
چکیده
"Optimal systems" of similarity solutions of a given system of nonlinear partial (integro-)differential equations which admits a finite-dimensional Lie point symmetry group G are an effective systematic means to classify these group-invariant solutions since every other such solution can be derived from the members of the optimal systems. The classification problem for the similarity solutions leads to that of "constructing" optimal subalgebraic systems for the Lie algebra 'S of the known symmetry group G. The methods for determining optimal systems of s-dimensional Lie subalgebras up to the dimension r of 'S vary in case of 3 < s < r, depending on the solvability of 'S. If the r-dimensional Lie algebra 'S of the infinitesimal symmetries is nonsolvable, in addition to the optimal subsystems of solvable subalgebras of 'S one has to determine the optimal subsystems of semisimple subalgebras of 'S in order to construct the full optimal systems of s-dimensional subalgebras of 'S with 3 < s <r. The techniques presented for this classification process are applied to the nonsolvable Lie algebra 'S of the eight-dimensional Lie point symmetry group G admitted by the three-dimensional Vlasov-Maxwell equations for a multi-species plasma in the non-relativistic case.
منابع مشابه
A Technique to Classify the Similarity Solutions of Nonlinear Partial (Integro-)Differential Equations. I. Optimal Systems of Solvable Lie Subalgebras
Lie group analysis is a powerful tool for obtaining exact similarity solutions of nonlinear (integro-) differential equations. In order to calculate the group-invariant solutions one first has to find the full Lie point symmetry group admitted by the given (integro-)differential equations and to determine all the subgroups of this Lie group. An effective, systematic means to classify the simila...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملNumerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind
In this paper, we use parametric form of fuzzy number, then aniterative approach for obtaining approximate solution for a classof nonlinear fuzzy Fredholmintegro-differential equation of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the nonlinear fuzzy integro-differential equations by an it...
متن کاملA Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کامل